

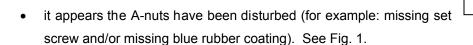
INSTALLATION, OPERATION AND MAINTENANCE MANUAL

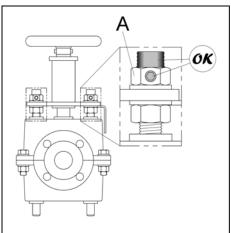
TYPE (BE) ENCLOSED VALVE BODY Series 2001

SMART VALVE [™] Wear Monitoring System

CUSTOMER SERVICE HOTLINE

Phone +1-410-850-4404

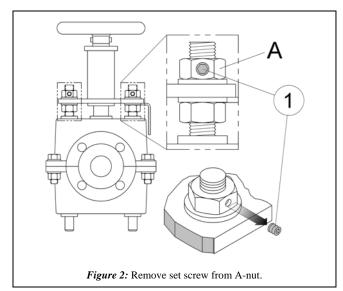



Calibration Instructions for 1-5inch (25-125mm) RF Valve® with Manual Actuator

The RF Valve® is factory calibrated to close evenly on the elastomer tube inside. After calibration, a set screw is in serted into each of the Anuts and a coating of blue rubber is applied to the pull bar threads above the A-nut (Fig. 1).

Tampering with the A-nut will disturb the factory calibration which can have adverse effects on the elastomer tube and/or the function of the RF Valve®.

Re-calibration becomes necessary when:


Figure 1: Factory calibration is set with a set screw and a coating of rubber on the pull bar.

- after removing the elastomer tube, deep cuts are found on the exterior of the elastomer tube where the pinch bars come into contact
- if wear inside the elastomer tube appears uneven

If recalibration seems warranted, its best to consult RF Technologies for confirmation. Contact information is at the bottom of the page.

STEP 1: Have a feeler gauge handy. In addition the RF Valve® must be taken out of the pipeline

STEP 2: Remove the set screw ① from each A-nut and cut/scrape away as much as possible the blue rubber coating above each A-nut (Fig. 2).

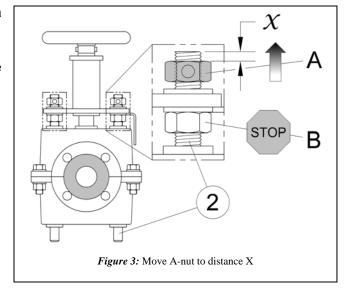

STEP 3: Now loosen ea ch A-nut until they come to a distance \mathcal{X} from the ends of their respective pull bar 2 (Fig. 3). The distance \mathcal{X} is determined from the information in Table 1.

Table 1: IMPERIAL UNITS

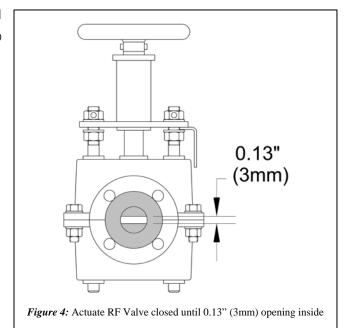

VALVE SIZE (in)	DISTANCE X (in)
1 to 1-1/4	0.20
1.5 to 3	0.30
4 to 5	0.40

Table 1: METRIC UNITS

VALVE SIZE (mm)	DISTANCE X (mm)
25 to 32	5
40 to 80	8
100 to 125	10

STEP 4: Begin to actuate the RF Val ve® closed and observe the gap inside. Stop closing the RF Val ve® when the gap is roughly 0.13" (3mm) in size (Fig 4).

STEP 5: The next objective is to make sure the closure of the RF Valve® remains even about the centerline. Continue to actuate the RF Valve closed and observe the opening inside. One or two gaps may be present (Fig. 5) when the RF Valve is nearly closed.

NOTE: for the two g ap case, the gaps may be at the extremes of the closure preventing them from being observed directly. In this case the feeler gauge will have to be used blindly.

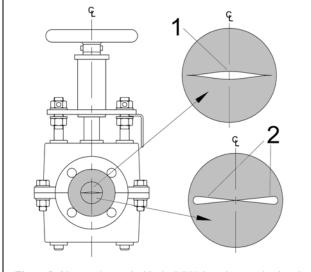
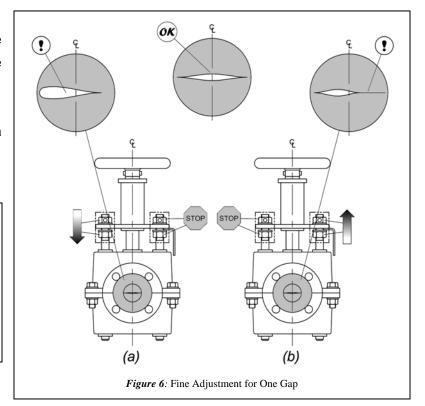


Figure 5: Observe the gap inside the RF Valve when nearly closed.

STEP 6: FINE ADJUSTMENT FOR ONE GAP


If the RF Val ve® appears to have a single gap, be sure the gap is centered within the RF Valve®.

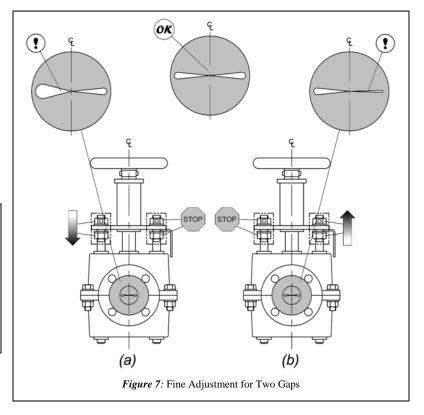
If the gap appears to be o ff-center (Figs. 6a & 6b), adjustments will have to be done to the A-nuts.

The are two simple rules:

- to make the gap smaller on one side,
 the A-nut should go DOWN (Fig. 6a)
- to make the gap bigger on one side,
 the A-nut should go UP (Fig. 6b)

It may take a few iterations to get it right.

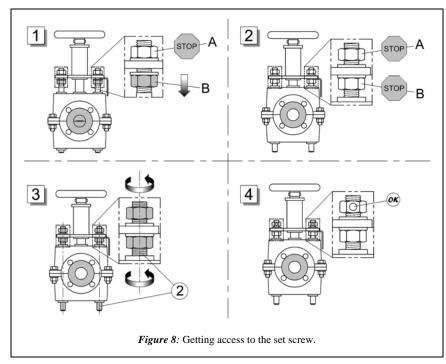
STEP 7: FINE ADJUSTMENT FOR TWO GAPS


If the RF Valve® appears to have two gaps, be sure the gaps are equal in size and appear evenly across the interior.

If the gaps appear to be uneven (Figs. 7a & 7b), adjustments will have to be done the Anuts.

The are two simple rules:

- to make the gap smaller on one side,
 the A-nut should go DOWN (Fig. 7a)
- to make the gap bigger on one side,
 the A-nut should go UP (Fig. 7b)


It may take a few iterations to get it right.

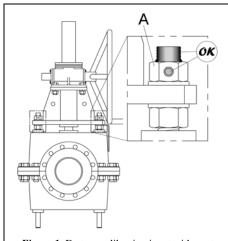
STEP 8: Actuate the RF Valve® closed and insert a set screw into each of the A-nuts. If the hole in the A-nut is inaccessible, then it can be made accessible by doing the following:

- start with RF Valve® closed
- spin both B-nuts do wn at least one turn (box 1 in Fig. 8).
- actuate the RF Valve® open (box 2 in Fig. 8).
- turn both the pull bar ② and the
 A-nut simultaneously as if they
 were one part until the hole in the
 A-nut is accessible (boxes 3 and 4
 in Fig 8). IT IS VERY
 IMPORTANT THAT THE A-NUT
 DOES NOT MOVE/TURN
 RELATIVE TO THE PULL BAR!

actuate the RF Valve® closed and insert the set screw and tighten.

STEP 9: Tighten the B-nuts against the bottom of the fastening plate. DO NOT allow the A-nut to turn along the pull bar during this step. Apply blue rubber coating (Fig. 1) to exposed thread above A-nut indicating RF Valve is now correctly calibrated. DO NOT CHANGE!

STEP 10: Actuate the RF Valve® open and follow the instructions in section **3.0 INSTALLATION** to put the RF Valve® back in service.



Calibration Instructions for RF Valve® With Manual Screw Jack Actuator

The following calibration instructions apply to RF Valves® with a manual screw jack actuator (sometimes called a manual gear reduction actuator)

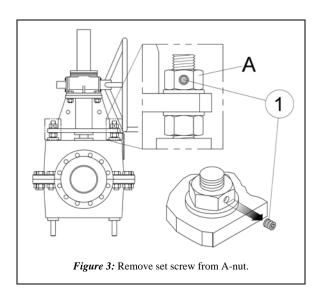
The RF Valve® is fa ctory calibrated to close with enough force to seal against pipeline pressure. After calibration is completed, a set screw is inserted into each of the A-nuts and a coating of blue rubber is applied to the pull bar threads above the A-nut (Fig. 1).

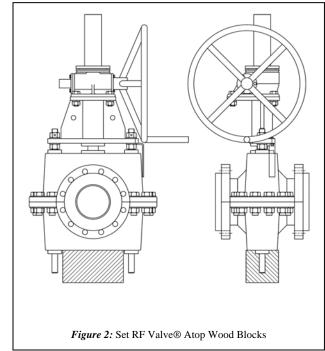
Changing the A-nut setting will distur be the factory calibration which can have adverse effects on the elastomer tube and/or the function of the RF Valve®.

Figure 1: Factory calibration is set with a set screw and a coating of rubber on the pull bar.

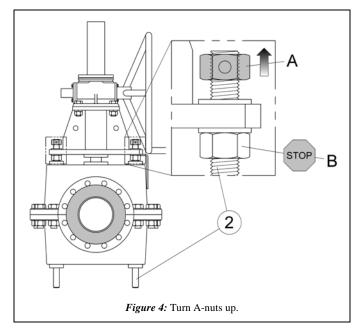
Re-calibration becomes necessary when:

- The A-nuts have been disturbed (for example: missing set screw and/or missing blue rubber coating). See Fig. 1.
- After removing the elastomer tube for maintenance, deep cuts are found on the exterior of the elastomer tube where the pinch bars come into contact
- If wear inside the elastomer tube appears uneven


If recalibration seems warranted, it's best to consult RF Technologies for confirmation. Contact information is at the bottom of the page.

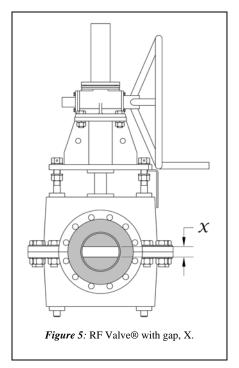


PREPARATION

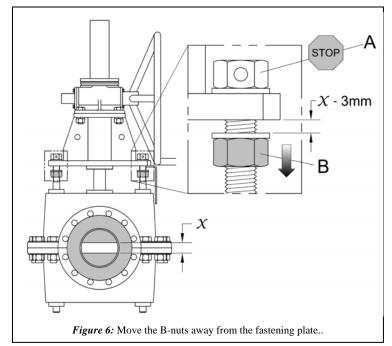

STEP 1: Have a feeler gauge handy. In addition the RF Valve® must be taken out of the pipeline. If possible, it is recommended to put the RF Valve® up on wooden blocks (Fig. 2)

STEP 2: Remove the set screw ① from each A-nut and cut/scrape away the blue rubber coating above each A-nut (Fig. 3).

STEP 3: Now loosen each A-nut until they are flush to the ends of their respective pull bar 2 (Fig. 4).

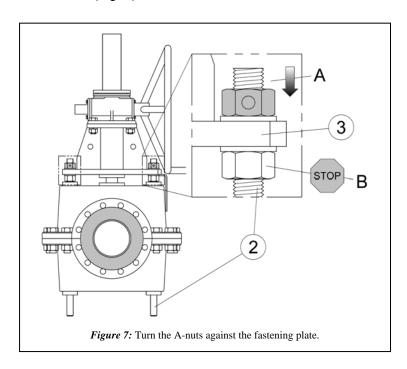


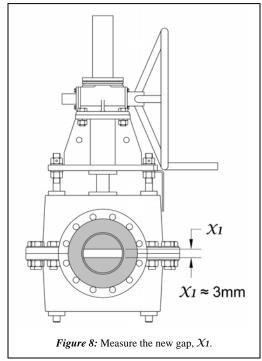
PRINCIPLES OF CALIBRATION


STEP 4: Actuate the RF Valve® closed with the handwheel.

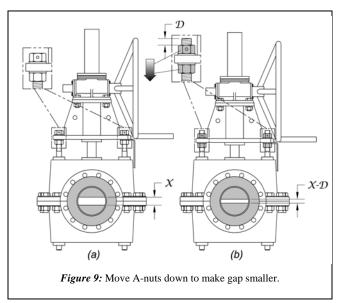
After actuation the RF Valve® will not close completely. There will be a gap, \mathcal{X} , inside (Fig. 5).

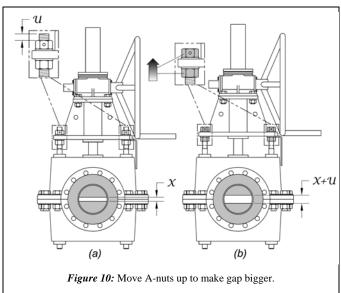
STEP 5: Measure the size of the gap, \mathcal{X} , inside the RF Valv e®. No w turn both B-nuts away from the fastening plate 3 a distance $\mathcal{X}-3$ mm.


[EXAMPLE: If gap $\mathcal X$ is 8mm then the B-nuts should be turned away from the fasteni ng plate $\cent{3}$ approximately 5mm.]

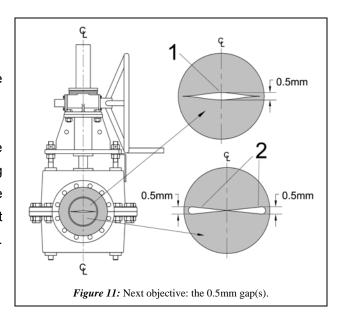


STEP 6: Actuate the RF Valve® completely open until the hand wheel stops turning and then turn the A -nuts against the fastening plate ③ (Fig. 7). DO NOT allow the B-nuts to turn/move along the pull bar ② during this step!


STEP 7: Actuate the RF Valve® closed again and measure the size of the new gap, X_{I} . It should be roughly 3mm in size (Fig. 8).



The previous 7 steps demonstrated how the closure of the RF Valve® is adjusted just by changing the position of the A-nuts along the pull bar. By moving the A-nuts down ward a distance, \mathcal{D} , along the pull bar it will cause the gap inside the RF Valve® to become smaller by \mathcal{D} (Fig. 9b). On the other hand, to make the gap inside larger by an amount \mathcal{U} , the A-nuts should be repositioned upward a distance \mathcal{U} (Fig. 10a & 10b).

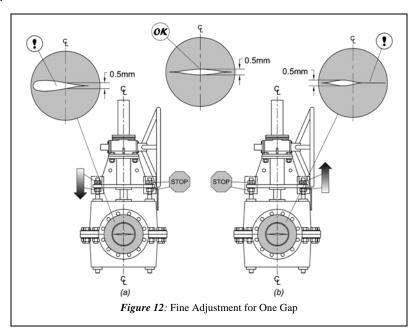


CALIBRATION

STEP 8: The next objective is to make the gap in side the RF Valve® 0.5mm AND the gap should be evenly distributed along the centerline of the RF Valve®.

NOTE: One or two gaps may be visible (Fig. 11). In the case of two gap s, both gaps should end up a measurement of 0.5mm. Having a light on opposite side of the RF Valve® will help show the gap clearly.

NOTE: When two gaps are visible, the gaps may be at the extreme edges of the closure preventing them from being observed directly. In this case the feeler gau ge must be inserted in each of the corners to measure by "fe el" that the 0.5mm gap s are p resent.

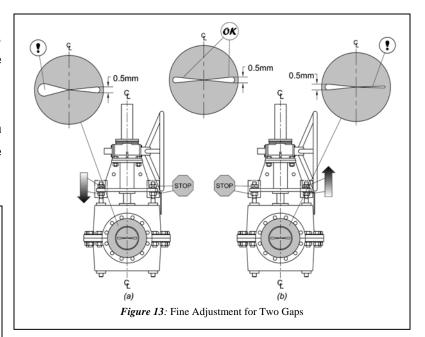

STEP 9: FINE ADJUSTMENT FOR ONE GAP

If the RF Val ve® appears to have a single gap, be sure the gap is centered within the RF Valve®.

If the gap a ppears to be off-center (Figs. 12a and 12b), adjustments will have to be done to the A-nuts.

The are two simple rules:

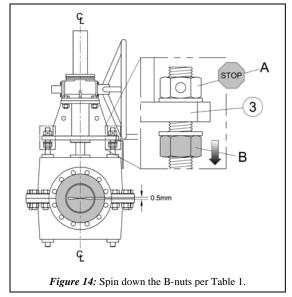
- to make the gap smaller on one side, the A-nut should go DOWN (Fig. 12a)
- to make the gap bigger on one side, the A-nut should go UP (Fig. 12b)


STEP 10: FINE ADJUSTMENT FOR TWO GAPS

If the RF Valve® appears to have two gaps, be sure the gaps are equally 0.5mm in size and appear evenly across the interior.

If the gaps a ppear to be uneven (Fig s. 13a and 13b), adjustments will have to be done the A-nuts.

The are two simple rules:


- to make the gap smaller on one side, the A-nut should go DOWN (Fig. 13a)
- to make the gap bigger on one side,
 the A-nut should go UP (Fig. 13b)

STEP 11: Once the gap(s) are set with the RF Valve® closed, turn the B-n uts (Fig. 14) away from the fastenin g plate ③ a number of turns as found in table 1 (next page).

The LINE SIZE and the LINE PRESSURE are stamped on a stainless steel name plate on the side of the RF Valve®.

An example of a stamped nameplate is shown in Fig. 15. For this example:

LINE SIZE = (1) = 4"

LINE PRESSURE = 2 = 150psi

Thus from Table 3 the B-nut should be spun 2 turns.

RF VALVE.

SERIAL UI234

MODEL BE4 PI50-513

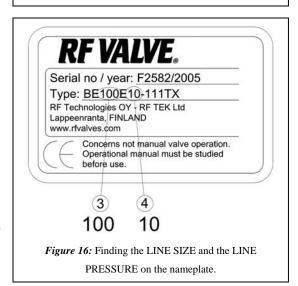
TUBE NR4-150-3C

RF Technologies, Inc., MD USA

1 2

4 150

Figure 15: Finding the LINE SIZE and the LINE PRESSURE on the nameplate.


Another example of a na meplate is shown in Fig 16. For this example:

LINE SIZE = 3 = 100mm

LINE PRESSURE = 4 = 10bar

Thus from Table 3 the B-nut should be spun 2 turns.

For more information about nameplates, see section **5.0 TECHNICAL MARKINGS.**

TABLE 1: IMPERIAL UNITS							
LINE SIZE (in)	11.25	1.53	46	8	10	14	1620
LINE PRESSURE (psi)		0	.150		030	31150	090
number of nut turns	2.75	2	1.75	1.5	1.25	1.75	1.75

TABLE 1: METRIC UNITS

LINE SIZE (mm)	2532	4080	100150	200	250	350	400500
LINE PRESSURE (bar)		010 02 310				06	
number of nut turns	2.75	2	1.75	1.5	1.25	1.75	1.75

See Fig. 17 below for explanation of fractional nut turn

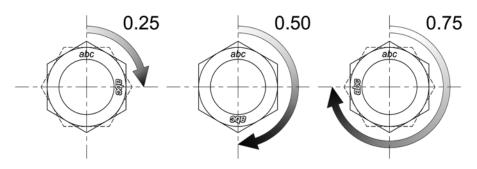
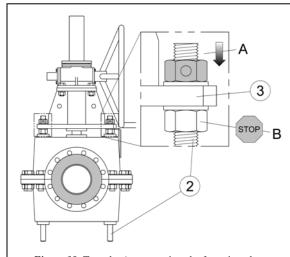
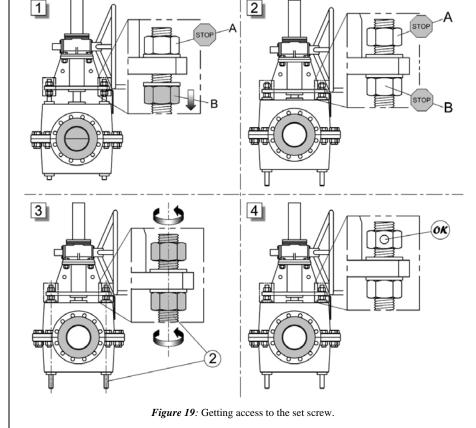


Figure 17: Fractional nut turn terminology.

STEP 12: A ctuate the RF Valve® open and tighten both Anuts against the fastening plate ③ (Fig. 18). DO NOT allow the B-nut to turn along the pull bar ② during this step.




Figure 18: Turn the A-nuts against the fastening plate.

STEP 13: Actuate the RF Valve® closed and insert a set screw into each of the A-nuts. If the hole in the A-nut is inaccessible, then it can be made accessible by following the instructions below. Otherwise, proceed to STEP 14.

- start with RF Valve® closed
- spin both B-nuts d own at least one turn (box 1 in Fig. 19).
- actuate the RF Valve® open (box 2 in Fig. 19).
- turn both th e pull bar ②
 and the A-nut simultaneously as if the y were one part until the hol e in the A-nut is a ccessible (boxes 3 and 4 in Fig 19).

 IT IS VERY IMPORTANT THAT THE A-NUT DOES NOT MOVE/TURN RELATIVE TO THE P ULL BAR!

actuate the RF Valve®
 closed and insert the set screw and tighten.

STEP 14: Tighten the B-nuts against the bottom of the fastening plate. DO NOT allow the A-nut to turn along the pull bar during this step. Apply blue rubber coating (Fig. 1) to exposed thread above A-nut indicating RF Valve® is now correctly calibrated. DO NOT CHANGE!

STEP 15: A ctuate the RF Valve® open with the h andwheel and follow the instructions in section 3.0 **INSTALLATION** to put the RF Valve® back in service.

5.0 TECHNICAL MARKINGS: VALVE MODEL AND TUBE MODEL

(Imperial Example) Valve Model: BE4/3 PF90-513T (Metric Example) Valve Model: BE100/80 PF6-513T

BE	4/3	PF	90	-	5	1	3	T
BE	100/80	PF	6	-	5	1	3	T
Body Type	Valve ID	Actuator	Operating		Flange	Body Material	Face-to-Face	Accessories
	(DN)	Type	Pressure		Drilling		Standard	
BE = Body	1 - 60 (inches)	A = Air Actuated (aiRFlex)	15 = 15psi		1 = DIN PN10	1 = Cast Iron	1 = DIN 3202 F5	A = Manual Air Valve Switch
Enclosed	25 - 1500 (mm)	with: Positioner	50 = 50psi		2 = DIN PN16	2 = Welded Carbon Steel	2 = DIN 3202 F15	C = MONSYS Box
BS = Body		F = ElectroPneumatic	90 = 90psi		3 = DIN PN25	3 = Stainless Steel	3 = ASME B-16	G = Gauges
Sealed	Reduced Port	D = Pneumatic	150 = 150psi		4 = DIN PN40	(AISI 316)	(Short)	L = Proximity Limit Switches
BO = Body	(Inlet / Outlet)	E = Electro-mechanic Actuator	300 = 300psi		5 = ANSI 150#	4 = Aluminum	4 = ASME B-16	N = Mechanical Limit Switches
Open		with: F = Electric Positioner	1 = 1bar		6 = ANSI 300#	5 = Ductile Cast Iron	(Long)	Y = Magnetic Limit Switches
		H = Hydraulic Actuator	4 = 4bar		7 = ANSI 600#	9 = Other	5 = ISO 5752	P = Pressure Switch
		with: M = Manual Pump	6 = 6bar		8 = JIS 10		(Table 6)	Q = Quick Exhaust Valves
		G = Motor Gear	10 = 10bar		9 = AS2129		9 = No Standard	R = Filter/Regulator
		M = Manual Handwheel	16 = 16bar		(Table D/E)			S = Solenoid
		with: G = Gear Reducer	25 = 25bar		0 = Other			T = Opening Tags
		L = Lock Out	40 = 40bar					V = Vacuum Pump
		P = Pneumatic Actuator		_,				X = Special
		with: M = Manual Override						Requirements
		<u>Positioner</u>						
		F = ElectroPneumatic						
		D = Pneumatic						
		Air Spring						
		RO = Fail Open						
		RC = Fail Close						
		Mechanical Spring						

(Imperial Example) Tube Model: PGR4/3-150-3CST (Metric Example) Tube Model: PGR100/80 10-3CST

150

3

IUN	7/3	150	- 3	CSI
PGR	100/80	- 10	3	CST
Tube Material	Tube ID	Pressure	Face-to-Face	Accessories
	(DN)	Rating	Standard	
CR = Chloroprene Rubber (Neoprene®)	1 - 60 (inches)	15 = 15psi	1 = DIN 3202 F5	A = aiRFlex design
CSM = Chloro-Sulfonated Polyethylene Rubber (Hypalon®)	25 - 1500 (mm)	50 = 50psi	2 = DIN 3202 F15	C = Wear Sensor Wire
EPDM = Ethylene-Propylene Rubber (Nordel®)		90 = 90psi	3 = ASME B-16	T = Opening Tags
EPDMH = Peroxide Vulcanized EPDM Rubber	Reduced Port	150 = 150psi	(Short)	S = Single Cone (reduced port)
FPM = Fluoro-Carbon Rubber (Viton®)	(Inlet / Outlet)	300 = 300psi	4 = ASME B-16	D = Double Cone (reduced port)
HNBR = Hydrogenated Nitrile Rubber		600 = 600psi	(Long)	Z = Straight Interior (filled arches)
IIR = Chloro-Butyl Rubber		1 = 1bar	5 = ISO 5752	F = Full Flanges
NBR = Nitrile Rubber (Buna-N®)		4 = 4bar	(Table 6)	X = Special
NR = Natural Rubber		6 = 6bar	9 = No Standard	Requirements
PGR = Pure Gum Rubber		10 = 10bar		
SBR = Styrene Butadiene Rubber		16 = 16bar		
with HT = High Temperature Rated		25 = 25bar		
FB = Foodgrade Black		40 = 40 bar		
FW = Foodgrade White			•	

PGR

CST

KO = Fail Open KC = Fail Close

TROUBLE SHOOTING, VALVE TYPES BE/BO/BS**P**

DISTURBANCE	POSSIBLE DEFECT	ACTION
Valve is leaking (in flow direction).	Air pressure in the actuator is too low Or fluid pressure higher than rated.	Check the air supply pressure. Generally min 6 bar. Check fluid pressure. Valve type marking indicates the max rated pressure.
	Pinch bars are not parallel or the distance between the bars is too long.	See maintenance instructions HO 001.4.
	Strange object is stuck between the pinch bars.	Remove the object.
	Sleeve is broken or worn out.	Measure the resistance of the sleeve. Change the sleeve. See maintenance instruction HO 001.4.
	Sealing of the actuator piston is leaking.	Change the sealing.
Flow fluid is leaking through the valve body bushings.	Sleeve is broken or worn out.	Change the sleeve.
Process control indicates that the valve does not open or close.	Proximity switch is not functioning or sensors do not signal.	Check the position of sensors and the distance between sensor plates and sensors. (Generally between 5-6 mm, max 8 mm) Remove possible strange objects and dirt from plates/sensors. Check the air supply pressure.

SERVICE BULLETIN

HO 037.2 Page 1/2

Update 2009-02-24/JR

TROUBLE SHOOTING, TUBE LIFE SHORT - VALVE TYPES BE/BO**P**and H**

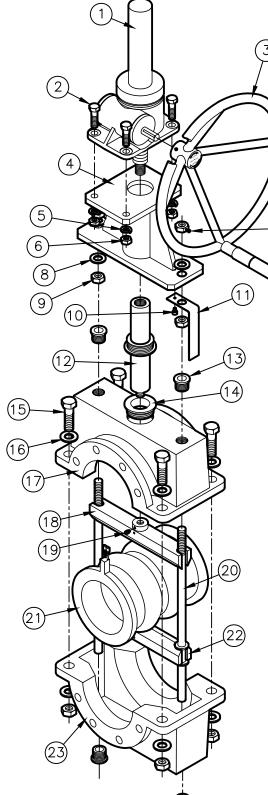
CHECK PROCESS CONDITIONS	
 Type of slurry, liquid, powder 	
- Temperature min/medium/max °C	
- Max operating pressure (barg)	
- Max pressure when valve is closed (barg)	
If the pipe/valve is washed	
- Type of washing liquid	
- Temperature max °C	
- Max pressure (barg)	
- Time needed for washing	
CHECK VALVE OPERATING CONDITIONS	
 Valve type and serial no (machine plate) 	
- Time in operation	
- Frequency of closing/opening, cycles/h etc	
- Supply air/hydraulic pressure min/max	
(barg)	
 Valve closing/opening time 	
- distance from the previous pipe bend, T-joint	< 2*DN □ > 2*DN □
CHECK VALVE CONDITION	
- bolts and nuts tightened	
 pull bar locking nut fixed/sealed 	
- air/hydraulic connections tight	
- actuator sealings are not leaking	
- Tmin -20°C,	
- operation of the auxiliaries	
- position of the actuator	Heavy actuators may need support if not vertical
- describe the type of damage in the tube- take	
photos of the tube or/and sent to RF	

POSSIBLE DEFECT	ACTION
Air /hydraulic pressure in the actuator is too	Valve type marking indicates the max rated
low (also short periods)	pressure.
Or operating pressure higher than rated.	- increase supply air pressure
	- larger actuator may be needed

SERVICE BULLETIN

HO 037.2 Page 2/2

Update 2009-02-24/JR


Valve is closing/opening a long time - during these phases wear is maximum	Check if air/ flow is large enough Installing quick exhaust valves on the air cylinder increases closing/opening speed Closing/opening speeds recommended - 1-3 s when DN ≤ 80 - 3-4 s when DN ≤ 200 - 4-7 s when DN ≤ 400
Valve is closing/opening too quickly - water hammer or pressure blow may result	Throttle/decrease air/hydraulic flow to the valve
Valve is close to the next pipe bend/T-joint - flow is directed on one side of the tube causing uneven wear	Remove the valve farther from the bend/T-joint
Process conditions have changed or are different from assumed	New elastomer quality, pressure rating or opening tags maybe needed.
Adjustment of the pinch bars is wrong	See maintenance instructions
Cylinder sealing is leaking	Change the sealing.

APPENDICES

Bill of Materials

Dimensional "as built" drawings

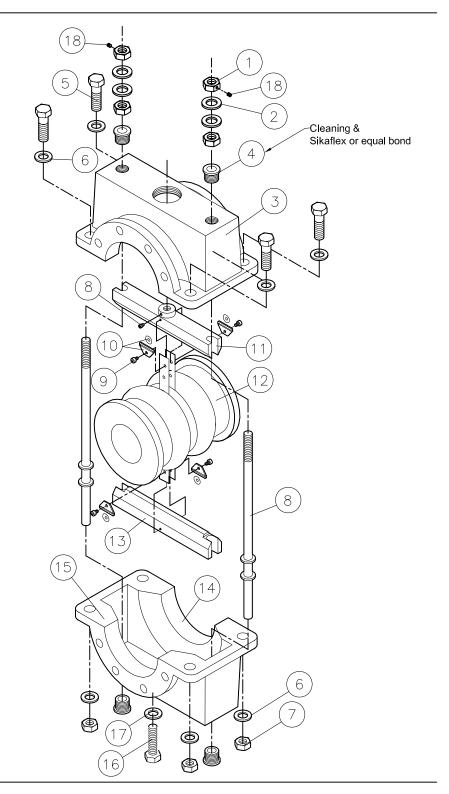
Accessories

RF VALVE®

MATERIALS OF CONSTRUCTION

	I	I
LINE	DESCRIPTION	MATERIAL
1	GEAR REDUCER	STEEL, CAST IRON, BONZE
2	HEX BOLT	AISI 304
3	HANDWHEEL	STEEL
	ACTUATOR BODY	WELDED STEEL
5	LOCK WASHER	AISI 304
6	HEX NUT	AISI 304
7	SET SCREW	AISI 304
8	FLAT WASHER	AISI 304
9	HEX NUT	AISI 304
10	SCREW	AISI 304
11	ON/OFF INDICATOR	AISI 304
12	EXTENSION BUSHING	AISI 304
13	PULL BAR BUSHING	POLY ACETAL
14	CENTER BUSHING	POLY ACETAL
15	HEX BOLT	AISI 304
16	FLAT WASHER	AISI 304
17	UPPER VALVE BODY	CAST IRON (6, 8)
		WELDED STEEL (10+)
18	UPPER PINCH BAR	STEEL
19	SET SCREW	AISI 304
20	PULL BAR	AISI 316
21	ELASTOMER TUBE	RUBBER
22	LOWER PINCH BAR	STEEL
23	LOWER VALVE BODY	CAST IRON (6, 8)
		WELDED STEEL (10+)

RF VALVES, INC. 1342—A CHARWOOD ROAD HANOVER, MD 21078 PH: +1 410 850-4404 www.ffvalve.com	BEX MGX-XXX MAT'LS OF CONSTRUCT MANUALLY ACTUATED (WITH GEAR REDUCTION)					
Drawn by: Stachura	size A	FSCM NO.		DWG NO. 000A259A		REV
7/24/03	SCALE	1:8	APPROVE	D	SHEET	


TECHNICAL SPECIFICATION TE 189.2

Version 06.03.03/KK

VALVE BODY ASSEMBLY

PARTS 9 and 10, if tube has opening tags PART 8, short pull bar, types BEXXM, -P and -H PART 8, long pull bar, types BEXXPD, -PF and -EF

BE valve body	
Part	Description
1	Nut
2	Washer
3	Valve body, upper part
4	Bushing, pull bar
5	Bolt
6	Washer
7	Nut
8	Pull bar
9	Screw
10	Washer
11	Pinch bar, upper
12	Elastomer tube
13	Pinch bar, lower
14	Valve body, lower part
15	Body sealing
16	Bolt
17	Washer
18	Retaining screw

